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Humans perceive ratios of spatial and temporal magnitudes, such as length and duration. Previous studies have
shown that spatial ratios may be processed by a common ratio processing system. The aim of the current study
was to determine whether ratio processing is a domain-general ability and consequently involves common proc-
essing of temporal and spatial magnitudes. Two hundred seventy-five participants completed a battery of spatial
and temporal ratio estimation and magnitude discrimination tasks online. Structural equation modeling was
used to analyze the relationship between ratio processing across domains while controlling for absolute magni-
tude discrimination ability. The four-factor higher order model, consisting of spatial and temporal magnitude
and ratio processing latent variables, showed adequate local and global fit, v2(44) = 41.41, p = .626, root mean
square error of approximation = .000. We found a significant relationship (r = .63) between spatial and temporal
ratio processing, suggesting that ratio processing may be a domain-general ability. Additionally, absolute magni-
tude processing explained a large part (60–66%) of the variance in both spatial and temporal ratio processing
factors. Overall, findings suggest that representation of spatial and temporal ratios is highly related and points
toward a common ratio processing mechanism across different types of magnitudes.

Public Significance Statement
Many of our day-to-day activities require us to process ratios. For example, we often use progress
bars to assess progress on a certain task (e.g., downloading a file). These ratios can take the form of
both ratios in space and time. We empirically investigated people’s ability to perceive and represent
ratios in both space and time. Our results show that the ability to perceive and represent spatial and
temporal ratios is highly related. This has implications for theories of both absolute and relative
magnitude processing for both spatial and temporal magnitudes.

Keywords: nonsymbolic spatial and temporal ratio processing, proportional reasoning, number line
estimation, a theory of magnitude (ATOM), structural equation modeling (SEM)
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Which queue is the shortest at the movies? How much time
will it take to run an errand? Many of our day-to-day decisions

are based on numerical information. While some decisions are
based on absolute magnitudes, such as a single length or dura-
tion, other decisions are based on relative magnitudes (i.e., the
magnitude of the relationship between two absolute magni-
tudes, otherwise known as proportions or ratios). For example,
we can easily tell from the battery icon on our electronic device
how much charge is left by comparing the length of the filled
bar to the total length of the battery icon, regardless of the over-
all size. The ratio between two lengths is an example of a rela-
tive magnitude in the spatial domain. However, humans also
use ratios in the temporal domain. For example, rhythms in
Western music are commonly composed of notes with propor-
tional durations, which is why we can recognize tunes despite
tempo changes. When a tune is slowed down, all durations are
lengthened such that the relative, or proportional, relationships
are maintained. Furthermore, some studies have shown that
adults can accurately represent, on a bounded line, temporal
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ratios present in a pair of serial intervals delimited by three
tones (Nakajima, 1987; Nakajima et al., 1988).
Given the wide range of stimuli for which we perceive and use

ratios, one may ask how these relative magnitudes are processed
across temporal and spatial domains. Previous research indicates
that ratios may be processed by a general ratio processing system
(RPS; Lewis et al., 2015). However, this field of research has
mostly focused on ratios that are symbolic (e.g., fractions) and
visuospatial and nonsymbolic (e.g., ratios of lengths). Therefore,
little is known about ratio processing mechanisms in other
domains such as time. This leaves unanswered the question of
whether ratios are processed by the same mechanism across mag-
nitudes in space (e.g., numerosity, length, area) and time (e.g.,
duration).

Magnitude Processing Across Space and Time

It has been previously proposed that numerical, spatial, and tem-
poral magnitudes may be processed by a generalized magnitude
system. A theory of magnitude (ATOM) is one such theory, which
suggests that numerical, spatial, and temporal magnitudes share a
common analog system in the brain (Walsh, 2003). The theory
also suggests that these different types of magnitudes are proc-
essed by common neural correlates, likely in the fronto-parietal
network (Bueti & Walsh, 2009; Walsh, 2003). Since this theory
was put forward, numerous groups have tested its predictions
using both behavioral and neuroimaging paradigms. While some
studies support the theory of a generalized magnitude system,
others cast doubt on its validity (see Hamamouche & Cordes,
2019).
From a behavioral perspective, interference effects between nu-

merical, spatial, and temporal magnitudes (i.e., the degree to
which a judgment on a magnitude is influenced by the presence of
another magnitude) are often inconsistent and asymmetric (Agrillo
et al., 2010; Alards-Tomalin et al., 2016; Cai & Connell, 2015,
2016; Casasanto & Boroditsky, 2008; Fabbri et al., 2012; Gijssels
et al., 2013; Ishihara et al., 2008; Srinivasan & Carey, 2010). For
example, some studies show a greater influence of duration on
judgments of spatial magnitude (Cai & Connell, 2015), while
other studies show the opposite effect in which spatial magnitude
only affects perceived duration (Casasanto & Boroditsky, 2008;
Gijssels et al., 2013). Similarly, studies on cross-modal adaptation
between space, time, and number either do not find any adaptation
effect (Anobile et al., 2018) or find asymmetrical effects in which
adaption in one dimension affects judgments in another dimension,
but not vice versa (Tsouli et al., 2019). Finally, studies investigat-
ing individual differences related to temporal and spatial magni-
tude acuity have reported similar null or inconsistent results
(Anobile et al., 2018; Mendez et al., 2011; Odic et al., 2016). For
example, Mendez et al. (2011) compared performance on length
and duration categorization tasks in humans and monkeys and
found that length categorization was correlated with duration cate-
gorization, but only for certain pairs of lengths and durations
(Mendez et al., 2011).
From a neuropsychological perspective, some populations, such

as patients with spatial neglect, show processing deficits across
spatial and temporal magnitudes (Basso et al., 1996), while other
populations, such as patients with Parkinson’s disease, show evi-
dence for a double dissociation between spatial and temporal

magnitude processing (Dormal, Grade, et al., 2012). Evidence
from neuroimaging studies suggests that neural correlates associ-
ated with spatial and temporal magnitude processing partially
overlap in the frontal and parietal cortices (Dormal, Dormal, et al.,
2012; Hayashi et al., 2013; Skagerlund et al., 2016). However,
these key brain areas have also been linked to other domain gen-
eral processes, and it is therefore difficult to conclude that these
areas constitute a generalized system specific to magnitude proc-
essing (Van Opstal & Verguts, 2013).

Given the inconsistent behavioral and neuropsychological evi-
dence, some have offered a more nuanced explanation for a gener-
alized magnitude system in which different types of magnitude are
initially processed by separate mechanisms but share a common
magnitude comparison system in later processing steps (Cona
et al., 2021; Van Opstal & Verguts, 2013). Others reject the idea
of a common magnitude system altogether and suggest that associ-
ations between spatial and temporal magnitude processing might
be better explained by domain-general processes such as working
memory or decision-making (Marcos & Genovesio, 2017; Van
Opstal & Verguts, 2013).

AGeneralized Ratio Processing System

Although it remains unclear whether spatial and temporal mag-
nitudes are processed or represented in a general magnitude sys-
tem, most of the research on these systems has studied perception
and representations of absolute magnitudes, leaving open the ques-
tion of how relative magnitudes (i.e., ratios) are processed across
spatial and temporal domains. From a physical perspective, abso-
lute magnitudes are concrete and orthogonal across different types
of magnitudes. For example, it is impossible to convert a length to
a duration without assigning an arbitrary conversion rule because
these magnitudes exist in different dimensions (e.g., 1 cm is not
equal to 1 s, nor 2, nor 3, etc.). In contrast, ratios are abstract, sec-
ond-order magnitudes, and therefore their value stays constant
regardless of the type of magnitude from which they have been
derived (Bonn & Cantlon, 2017; Meng et al., 2019; Park et al.,
2021). For example, a ratio of a half (1/2) does not change whether
it is depicted by a bisected line, a set of dots in which half are one
color and the other half is a different color, or an auditory interval
that is half the duration of another interval.

Given ratios’ abstract nature, one might predict that there exists
a system that extracts and represents ratio magnitudes, regardless
of their format (i.e., the type of magnitude used to depict them).
Multiple psychophysical studies by Stevens have shown that
humans can estimate relative magnitudes in several domains (e.g.,
Stevens & Galanter, 1957; Stevens, 1960). More recently, Lewis
et al. (2015) have proposed an RPS they defined as “a set of neuro-
cognitive architectures that support the representation and process-
ing of nonsymbolic ratios” (Lewis et al., 2015, p. 144). This
theory is derived from recent developments in the study of ratio
processing and proportional reasoning. For example, Vallentin and
Nieder (2010) showed that rhesus monkeys can discriminate non-
symbolic proportions in a spatial proportion-discrimination task.
In this study, monkeys were shown a pair of lines representing a
specific ratio followed by a second pair of lines representing either
the same or a different ratio. The task was to indicate whether the
ratio of the second stimulus matched the ratio of the first stimulus.
The monkeys performed well above chance, and their performance
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resembled that of human subjects on all trained ratios as well as
novel, untrained ratios, indicating that they had generalized the
concept of proportionality (Vallentin & Nieder, 2010). Addition-
ally, single-cell recordings collected during the task suggest the
presence of ratio selective neurons in the prefrontal cortex (Vallen-
tin & Nieder, 2010). The authors later replicated these findings
and found similar ratio-tuned neurons in the posterior parietal cor-
tex, a brain region often associated with magnitude processing
(Vallentin & Nieder, 2010). Results from these studies provide
strong support for an innate RPS shared with nonhuman primates.
However, such a mechanism cannot necessarily be generalized to
other types of magnitudes given that ratios were only depicted
using line length.
Subsequent neuroimaging studies in humans have provided sup-

port for a common ratio processing system and extended them to
the study of other magnitudes such as numerosity. For example,
one study using a functional magnetic resonance imaging (fMRI)
adaptation design found that humans encode relative magnitudes
in the same areas known to encode absolute magnitudes (Jacob &
Nieder, 2009b). In this study, the same ratio with varying overall
sizes was repeatedly presented to participants, causing the signal
in brain areas involved in ratio processing to decrease (a phenom-
enon often referred to as neural adaptation). Then, after multiple
presentations of the same ratio, a comparison ratio was presented
causing the signal in these areas to recover (i.e., increase). Partici-
pants showed this adaptation response to nonsymbolic ratios
depicted using both length and numerosity (i.e., sets of dots and
triangles). More importantly, the same adaptation pattern was
found for both magnitude types (length and numerosity) in the
same brain areas (Jacob & Nieder, 2009b). Another study using
the same fMRI adaptation paradigm with number and word frac-
tions (e.g., 3/6 and “a half”) uncovered a similar pattern of activ-
ity, even when number and word fractions were mixed across
trials (Jacob & Nieder, 2009a). These results converge with evi-
dence from previous studies indicating that relative magnitudes
are perhaps processed by a higher order mechanism that is invari-
ant to format or type of magnitude. In other words, once absolute
magnitudes are encoded, quantifying the relationship between
magnitudes might be done by a single higher order mechanism
whether they are symbolic (e.g., number and word fractions) or
nonsymbolic (e.g., numerosity or length). However, the current
body of literature has mainly focused on ratio processing in the
spatial domain, and it is therefore unknown whether ratios in time
might be processed by the same ratio processing mechanism.

Current Study

Previous research on magnitude processing across spatial and
temporal domains has mostly been conducted on absolute magni-
tudes, and little is known about how relative magnitudes (i.e.,
ratios) are processed across domains. Furthermore, research on ra-
tio processing has been limited to spatial magnitudes such as
length and numerosity. Therefore, the aim of the current study was
to bridge this gap by investigating how spatial and temporal ratio
processing are related. More specifically, we investigated whether
ratio processing is a domain-specific mechanism (i.e., ratios proc-
essed separately for each type of magnitude) or domain-general
mechanism (i.e., ratios processed by a unique mechanism inde-
pendent of magnitude type).

To investigate this question, adult human participants completed
12 tasks measuring ratio estimation (RE) and absolute magnitude
discrimination, hereafter magnitude discrimination (MD), both in
the spatial and temporal domain. These tasks included three spatial
RE tasks (i.e., estimating the ratio between two lengths, areas, and
numerosities), three temporal RE tasks (i.e., estimating the ratio
between two durations), three spatial MD tasks (i.e., discriminat-
ing the longest/largest of two lines, areas, and numerosities), and
three temporal MD tasks (i.e., discriminating the longest of two
durations). If spatial and temporal ratios are processed by a unique,
ratio-specific mechanism, then individuals’ temporal and spatial
RE ability were expected to correlate even after controlling for
absolute magnitude processing. In other words, an individual who
is more accurate at estimating spatial ratios, such as the relative
length between two lines, would also be more accurate at estimat-
ing temporal ratios, such as the relative duration between two
intervals, when controlling for their ability to perceive and process
absolute lengths and durations. By controlling for absolute magni-
tude processing, we eliminated the possibility that the relationship
between ratio processing in space and time is explained by the pre-
cision with which people perceive absolute spatial and temporal
magnitudes.

To test the hypothesis above, we developed and tested four
competing structural equation models (SEMs): a single-factor con-
firmatory factor analysis (CFA) model, two two-factor CFA mod-
els, and a four-factor SEM model. These are shown in Figure 1
and described in more detail below. In deriving a set of competing
models, we originally proposed to include a bifactor model sepa-
rating a general factor (domain-general ratio processing) from the
two specific factors (spatial ratio processing and temporal ratio
processing). However, we became aware during the analysis stage,
and upon further investigation of the literature on model identifica-
tion, that a bifactor model with two specific factors and three indi-
cators each is unidentified, meaning that it cannot provide a
unique solution. Therefore, this bifactor model has therefore been
omitted from the current report despite its inclusion in the prereg-
istered report, which can be found at https://osf.io/h6gts.

Analysis of SEM models yields two types of information:
model fit (i.e., how well does the model fit the data) and parameter
estimates (i.e., the magnitude of the relationships between varia-
bles) along with their standard errors, which can be used for statis-
tical tests. Although model fit was examined as a first necessary
step to assure the adequacy of each measurement model proposed,
the relevant hypotheses were confirmed based on the magnitude
and statistical significance of the parameter estimates of the
retained model.

Single-Factor CFAModel

Since all tasks involve making judgments about quantity, a sin-
gle-factor model tested whether performance on the 12 tasks could
be explained by a single general magnitude processing factor (Fig-
ure 1a). This model was not expected to fit the data as well as the
subsequent models because it assumes that all tasks can be
explained by a single latent variable. Thus, it does not account for
differentiation between spatial and temporal processing or abso-
lute magnitude versus ratio processing. In this model, as well as
all subsequent models, a correlation parameter was included
among the residuals of analogous estimation and discrimination
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tasks to account for common variance due to similar stimuli. For
example, the residuals of the line length RE task were allowed to
correlate with the residuals of the line length MD task because the
same shape was used.

Two-Factor CFAModels

Next, a two-factor CFA model tested whether performance on
the tasks could be explained by two correlated factors: a general
ratio processing factor and an absolute magnitude processing fac-
tor (Figure 1b). This model tested the possibility that ratio process-
ing and absolute magnitude processing are related but separable
constructs. Put differently, this model tested whether the data
could be explained solely by the current theories of a generalized
magnitude system (e.g., ATOM; Walsh, 2003) and RPS (e.g.,
Lewis et al., 2015). The two-factor model was expected to fit the
data significantly better than the single-factor model. However, it
was not expected to fit the data as well as the next model because
it does not account for the hypothesized differentiation between
performance on spatial versus temporal tasks. In addition, a second
two-factor model (not preregistered) with spatial magnitude proc-
essing and temporal magnitude processing as latent variables was
fit to test whether performance on the tasks could be explained only
by stimulus type (spatial or temporal). This model assumes that
magnitudes, whether they are absolute or relative, are processed

similarly within domains and differently across the spatial and tem-
poral domains (Figure 1c).

Four-Factor Higher Order SEMModel

The fourth model was an SEM rather than a CFA and was there-
fore modeled in two steps. The first step consisted of assessing the
measurement model by fitting a four-factor CFA to the data. The
four latent variables included in the model were spatial ratio proc-
essing, temporal ratio processing, spatial magnitude processing,
and temporal magnitude processing.

The second step consisted of fitting the structural model using
the same four latent variables as the four-factor CFA model but
now specifying specific relationships between these variables.
First, the two ratio latent variables were regressed onto the latent
absolute magnitude variables (represented with the single-headed
arrows) because we assumed that participants would process the
absolute magnitudes of the stimuli before extracting the ratio, and
therefore absolute magnitude ability would explain ratio process-
ing ability. Adding these paths allowed us to test the strength of
the relationship between spatial and temporal ratio processing
when controlling for spatial and temporal magnitude processing.
In addition to controlling for within-domain absolute magnitude
processing (e.g., spatial magnitude on spatial ratio), we also added
dashed paths controlling for between-domain absolute magnitude

Figure 1
Hypothesized Models

Note. EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; MD = magnitude discrimination; RE = ratio estimation.
(a) The single-factor model assumes that performance on all tasks can be explained by a general magnitude factor. (b) The two-factor model assumes
that performance on the tasks can be explained by two correlated latent factors (absolute and ratio magnitude). (c) The two-factor model assumes that
performance on the tasks can be explained by two correlated latent factors (spatial and temporal magnitudes; not preregistered). (d) The four-factor
higher order model assumes that performance on the tasks can be explained by four factors. Single-headed arrows control for absolute magnitude proc-
essing ability in both ratio processing factors.
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processing (e.g., spatial magnitude to temporal ratio). Given that
the literature is divided on how different types of magnitudes are
processed, we included these paths as they might control for addi-
tional variance related to absolute magnitude processing ability
and general cognitive ability. Since we did not expect the coeffi-
cients for the dashed paths to be significant, we estimated and
compared two models (one with the dashed paths and one without
the dashed paths) and retained the model with the best fit.
Last, a second-order factor (i.e., general ratio processing) influ-

encing spatial and temporal ratio processing variables was
included to explain the common variance between spatial and tem-
poral ratio processing (Figure 1d). If ratio processing is a domain-
general mechanism, large coefficients (i.e., loadings) are expected
between the general ratio processing factor and the two ratio fac-
tors (spatial and temporal ratio processing). Equality constraints
were placed on the two higher-order loadings for the model to be
locally identified.

Method

Participants

Three hundred twenty-seven participants were recruited from
the online survey panel Prolific. Thirty-nine participants withdrew
before the start of the study due to technical difficulties, and 13
participants withdrew partway through the study either due to
technical difficulties or by choice. The final sample consisted of
275 participants between 18 and 50 years old (M = 27.68, SD =
8.33; 106 women, 166 men, three nonbinary). Participants were
residents from the United Kingdom (35.7%), Portugal (32.5%),
United States (14.8%), Spain (5.8%), and South Africa (4.0%), as
well as Ireland, Belgium, Canada, France, Germany, and Sweden
(remaining 7.2%). To be eligible, participants had to be a mini-
mum of 18 years old and self-report normal hearing and normal or
corrected to normal vision. Participants also required access to a
laptop or desktop computer with a keyboard and sound. Sampling
on Prolific was also restricted to adults who were fluent in English
to limit cases in which the participants did not understand the
instructions well enough to execute the tasks. Sampling was also

restricted to adults between the ages of 18 and 50 to limit the
potential developmental confounds associated with an older popu-
lation. Data were collected from April 24 to May 13, 2021. Partici-
pants were paid £7.50 for their participation. The study was
approved by the nonmedical research ethics board at the Univer-
sity of Western Ontario.

Study Design andMaterials

Participants completed six RE tasks and six MD tasks. The
study design is depicted in Figure 2. Tasks were grouped by task
type (e.g., they completed all RE tasks and then all MD tasks), and
the task type order was counterbalanced across participants. The
order of tasks within each task type was randomized for each par-
ticipant. Participants were permitted to take a 5-min break between
the two sections. Once participants had completed all 12 tasks,
they completed a short demographics questionnaire. The entire
study took approximately 1 hour to complete. The study was pro-
grammed using the free software PsychoPy Version 2020.2.10
(Peirce et al., 2019) and hosted on the platform Pavlovia. The au-
ditory stimuli for the various auditory tasks were generated using
MATLAB (Version 2019a).

RE Tasks

The RE tasks were a variation on the number line task com-
monly used in numerical cognition research (Siegler & Opfer,
2003). For all RE tasks, participants were presented a spatial or
temporal ratio and then asked to represent that ratio on a bounded
line (Figure 3a). In each trial, participants could click anywhere on
the line and subsequently adjust their estimation if needed. Partici-
pants then pressed on the space bar to continue to the next trial. At
the start of each RE task, participants were instructed to try to use
the entire response line throughout the trials. There were three spa-
tial RE tasks (i.e., pairs of dot arrays, line lengths, and circle areas)
and three temporal RE tasks (i.e., auditory and visual durations
with “empty” time intervals and auditory duration with “filled”
intervals). Thus, all spatial RE tasks were visual tasks, and two
temporal RE tasks were auditory and one was visual.

Figure 2
Counterbalancing and Randomization of Task Order

Note. See the online article for the color version of this figure.
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For spatial RE tasks, participants were presented with a pair of
stimuli: One of the stimuli represented the part, while the other
represented the whole (Figure 3b). The participants’ task was to
represent the part:whole ratio on a bounded line (adapted from
Meert et al., 2012; Möhring et al., 2016). For example, if the stim-
ulus corresponding to the part was half the size of the stimulus cor-
responding to the whole, then the participant would respond by
marking the middle of the line. For each trial, the visual stimuli
were presented for 1,500 ms and then replaced by the response
line. At each end of the line was a figure showing a ratio of 0:1 on
the left and 1:1 on the right (Figure 3c).
For temporal RE tasks, participants were presented a divided

interval. Divided intervals were denoted either by three empty
or filled tones or three brief flashes (see Figure 4). Participants’
task was to represent the ratio of the divided interval using a
bounded line (adapted from Nakajima, 1987). Participants were
instructed to estimate when the second tone/flash occurred in
relation to the first and third tones. For example, if the second
tone/flash was presented halfway between the first and third
tones/flashes, then the participant would respond by marking
the middle of the line.
Each part-whole pair was created from 11 possible ratios (1/12

to 11/12). Each whole stimulus in the part-whole pair had three
overall magnitudes that were randomized throughout the task. This
resulted in a total of 33 trials (3 total magnitudes 3 11 ratios) per
task. Note that for temporal tasks, the whole corresponded to the
total duration of the divided interval and the part corresponded to
the interval between the first and second tones/flashes. Spatial stim-
uli were adapted from (Matthews et al., 2016; Park & Matthews,
2020; Park et al., 2021). Magnitudes used for the various spatial
and temporal stimuli can be found in Table 1.
For tasks with empty auditory and visual intervals, durations

were measured from the offset of the tone/flash to the onset of the
subsequent tone/flash. For visual stimuli, flash duration was two

frames with a refresh rate of 60 Hz (�32 ms). For auditory stimuli,
the tone duration for empty intervals was matched to the flash du-
ration (�32 ms). For tasks with filled intervals, the duration of
each tone was equal to the length of the specified duration fol-
lowed by a silence of 16 ms (to demarcate the onset of the next
tone). The third tone in the filled interval stimuli was 200 ms
across all ratios and total durations. Tones of 500 Hz were used in
both the empty and filled tasks and had 10-ms linear onset/offset
ramps.

MD Tasks

To account for spatial and temporal absolute magnitude proc-
essing ability, participants completed six MD tasks, each created
to be analogous to the six RE tasks. For all MD tasks, partici-
pants had to indicate which one of two stimuli was the largest/
longest. They were instructed to press the “F” key if the first/
stimulus on the left was larger/longer or the “J” key if the sec-
ond/stimulus on the right was larger/longer. Their response im-
mediately triggered the start of the next trial. Participants were
instructed to respond as quickly as possible.

For spatial MD tasks, participants were presented a pair of vis-
ual stimuli and asked to indicate which of the two was the largest
(i.e., circle area), was the longest (i.e., line length), or had the
greatest quantity (i.e., number of dots; see Figure 5). The pair of
stimuli were presented simultaneously for 1,000 ms. For temporal
MD tasks, two intervals were presented serially, separated by
�2,400 6 150 ms, and participants indicated which of the two
intervals was longer (see Figure 6).

Stimuli for the discrimination task were created using eight
standard magnitudes and five comparison ratios. As a result, each
task was composed of 40 trials (5 comparison ratios 3 8 stand-
ards). Each trial consisted of comparing a standard to a compari-
son magnitude, which was obtained by multiplying the standard
magnitude with one of the comparison ratios. For example, given

Figure 3
Illustration of a Spatial RE Trial and Stimuli

Note. (a) Spatial ratio estimation (RE) trial. (b) Example stimuli for the dot array, line length, and circle area tasks, respectively.
(c) Response screen for dot array, line length, and circle area. Stimuli on the left and right of the response line corresponded to ratios
of 0:1 and 1:1, respectively. See the online article for the color version of this figure.
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a standard of 1 s and the five comparison ratios 1:1.20, 1:1.25,
1:1.30, 1:1.40, and 1:1.60, participants were presented the stand-
ard-comparison duration pairs of 1 s and 1.20 s, 1 s and 1.25 s, etc.
Comparison ratios, which were determined based on previous

piloting, varied across tasks (e.g., they were different for the line
length and the circle area discrimination tasks) but remained con-
stant across all participants. Standard and comparison magnitudes
spanned the range of the magnitudes presented in the RE tasks.
The range of standard magnitudes for each task is listed in Table
1. The side on which the correct response was presented (or order
in the case of temporal stimuli) was counterbalanced so that an
equal number of larger/longer trials was presented on both sides
(or in both orders in the case of temporal tasks). The side/order of
presentation of the stimulus pairs was also counterbalanced across
participants.

Practice Trials

Participants completed three practice trials for each RE task. In
these practice trials, participants were shown a stimulus pair and
asked to estimate the ratio for that pair using the response line. Af-
ter they responded, a green line appeared on the response line

indicating the correct answer. The same three ratios were given for
every practice trial set (i.e., .25, .5, .75). Practice trials were done
on the same total magnitude levels across all participants.

Participants also completed three practice trials at the beginning
of each MD task. In these practice trials, participants were shown
a pair of stimuli (i.e., the standard and a comparison) and indicated
which was the largest/longest. After they responded, feedback was
given indicating correctness (i.e., “correct” or “incorrect”).

Attention Checks

Given that the study was conducted online, each task included
one attention trial to verify that participants were not simply click-
ing through instead of paying attention to the task. For all attention
trials, participants saw a screen after the stimulus presentation dis-
playing “Attention check!” which lasted 1 s. For RE tasks, partici-
pants were then instructed to place their cursor either to the
extreme left or right of the response line. The attention trial stimu-
lus ratio for ratio tasks was always .5 so that the attention check
response would not be confounded by actual estimations. The side
of the correct response (i.e., left or right) was decided randomly
for each trial.

Figure 4
Illustration of Temporal RE Trial for Three Types of Temporal Intervals

Note. RE = ratio estimation. Temporal RE trials for (a) empty visual intervals, (b) empty auditory intervals,
and (c) filled auditory intervals. Examples are for a ratio of .5 and a total duration of 960 ms. A blank screen
lasting 750 ms immediately preceded and followed the first and last flash/tone, respectively (not depicted in
figure). See the online article for the color version of this figure.
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For all MD task attention checks, participants were instructed to
press either the “F” or “J” key, regardless of the stimulus presented
for that trial. The attention trial stimulus for the MD tasks was
drawn from the easiest ratio bin, for which the difference between
the stimulus pair was the largest and easiest to identify. The spe-
cific key participants were instructed to respond with (i.e., “F” or
“J”) corresponded to the incorrect answer for the stimulus pair
presented.

Demographics

Once participants completed all RE and discrimination tasks,
they completed a demographics questionnaire. Information such as
gender, age, years of education, hearing, and music experience
(e.g., years of formal music training and years of music practice)
were collected. Participants were also asked whether they under-
stood how to perform the tasks, how difficult they perceived the
tasks to be using a 3-point Likert scale (easy, neutral, or difficult),
and whether they experienced any technical difficulties with either

the auditory or visual stimuli during the experiment. This informa-
tion was collected to support decisions regarding data exclusion
during data preprocessing.

A Priori Power Analyses

Using Mplus, Monte Carlo simulations were conducted for all
proposed models. Sample size was decided based on the results of
the power analysis for a four-factor model with correlated resid-
uals as that was the main model of interest. This model is equiva-
lent to the higher order model presented in Figure 1d but has
correlated residuals between the two ratio factors instead of a
higher order factor, which facilitates specification and interpreta-
tion of the coefficients and effect sizes. As there was no previous
literature on the relationship between spatial and temporal ratio
processing, we set the value to the smallest effect size of interest.
Results from the simulations showed that a sample size of 275 was
appropriate to detect a minimum correlation of .25 between the spa-
tial and temporal ratio latent factors, controlling for the magnitude

Figure 5
Illustration of a Spatial MD Trial and Stimuli

Note. MD = magnitude discrimination. (a) Example of an MD trial. (b) Example stimuli for the dot array,
line length, and circle area MD tasks. See the online article for the color version of this figure.

Table 1
Task Parameters for Ratio Estimation and Magnitude Discrimination Tasks

Tasks

Magnitude discrimination Ratio estimation

Comparison ratios Range of standards Stimulus ratios
Total magnitudes
(denominator)

Dot number 1.09 (12:11), 1.10 (11:10), 1.12
(9:8), 1.14 (8:7), 1.25 (5:4)

48–133 dots 1/12, 2/12, 3/12, 4/12,
5/12, 6/12, 7/12, 8/
12, 9/12, 10/12, 11/12

75, 100, 125 dots

Line length 1.01, 1.02, 1.03, 1.06, 1.12 75, 100, 125 pixels 75, 100, 125 pixels
Circle area 1.02, 1.04, 1.06, 1.08, 1.18 50–100 pixels 50, 75, 100 pixels
Empty auditory intervals 1.20, 1.25, 1.3 1.4, 1.6 200, 300, 400, 500, 600,

700, 800, 900 ms
480, 960, 1,440 ms

Filled auditory intervals 1.20, 1.25, 1.3 1.4, 1.6 200, 300, 400, 500, 600,
700, 800, 900 ms

480, 960, 1,440 ms

Empty visual intervals 1.20, 1.25, 1.3, 1.4, 1.6 400, 450, 500, 550, 600,
700, 800, 900 ms

960, 1,200, 1,440
ms

Note. Circle area values in table are given using radius length. However, all circle stimuli pairs were calculated based on circle area.
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latent variables, with a power of .8 at the standard .05 alpha error
probability. All 1,000 samples generated in the simulation reached
convergence. Other relationships, such as spatial ratio-magnitude
processing and spatial-temporal magnitude processing, were esti-
mated based on previous literature (see online supplemental
materials). Power analyses for this model can be found at https://
osf.io/374zu/.

Preprocessing

Trials with long reaction times (greater than 30 s for RE tasks and
10 s for MD tasks) were excluded, as well as trials with significantly
large errors in the RE tasks (for details, see online supplemental
materials). This resulted in the exclusion of one trial in 20% of
responses (i.e., tasks) across all tasks and participants, two trials in
2.33% of responses, and three to five trials in .88% of responses.
Additional preprocessing steps were implemented to identify and cor-
rect RE responses with incorrect estimation patterns (i.e., scale inver-
sion or half scale patterns). Out of all RE tasks across all participants,
.8% of responses were corrected for scale inversion, and 3.15% of
responses were corrected for half scale patterns (i.e., participants
only used first half or last half of scale).
Aggregate scores were then calculated. For RE tasks, the abso-

lute error (stimulus ratio � estimated ratio) was calculated for
each RE trial. Absolute error was then averaged across trials for
each task separately to obtain the average absolute error (average
jerrorj). For discrimination tasks, the proportion of correct trials
was calculated separately for each task. This score was then
reversed prior to conducting the main analyses by subtracting

them from 1 so that both aggregate scores would have the same
direction (i.e., lower scores indicate better performance).

Once the aggregate scores for both RE and MD tasks were cal-
culated, we identified responses with low overall accuracy (i.e.,
response patterns with slopes less than .3 for RE tasks and propor-
tion correct less than .55 for MD tasks) and excluded these if par-
ticipants indicated they did not understand the task, had technical
difficulties (e.g., did not hear all tones), or failed the attention
check. This resulted in the exclusion of 20 responses (i.e., tasks)
across 13 participants. Additionally, four participants were entirely
excluded from the analysis because they did not complete most of
the tasks properly, did not understand how to complete most of the
tasks, and/or showed signs of noncompliance (i.e., failed attention
checks and long RTs on most tasks). This resulted in a final sam-
ple of 271 participants. Of these 271 participants, 258 participants
had complete data sets (i.e., an aggregate score for each task).

Additional details about the preprocessing steps described
below as well as a summary of trial and response exclusions are
available at the following link: https://osf.io/uwd2t/. Visualizations
of responses of the retained sample are available at the following
link: https://osf.io/7t8sr/.

Main Analyses

Model Estimation

All analyses were conducted using the software R (Version
4.1.1) and the lavaan R package Version .6.8 (Rosseel, 2012).
Models were estimated using a robust maximum likelihood

Figure 6
Illustration of Temporal MD Trial for Three Types of Temporal Intervals

Note. MD=magnitude discrimination. TemporalMD trials for (a) empty visual, (b) empty auditory, and (c) filled audi-
tory intervals. Examples are for a comparison ratio of 1.25 and a total duration of 960 ms. A blank screen lasting 700 to
750ms immediately preceded and followed each interval (not depicted in figure). Finally, a jitter lasting up to 150mswas
added in between the presentation of the first and second intervals. See the online article for the color version of thisfigure.
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estimator. This method provides robust standard errors (Huber-
White) and scaled fit statistics for data and is appropriate for data
with slight deviations from multivariate normality (Savalei, 2014;
Savalei & Falk, 2014; Yuan et al., 2015). Once models were esti-
mated, we verified that solutions were admissible and empirically
identified (e.g., all standardized correlations were below 1, no neg-
ative variances). Missing data were managed by using full infor-
mation maximum likelihood (FIML), which assumes that data are
missing completely at random (MCAR) or at random when con-
trolling for auxiliary variables (MAR). Missing data were due to a
few cases of technical issues, noncompliance, or misunderstanding
of the tasks. We have no reason to believe these missing data do
not satisfy the MCAR/MAR assumption.

Model Evaluation

Each model was fit and assessed individually using global and
local fit indices. Four global fit indices were considered: chi-
squared test, comparative fit index (CFI), root mean square error
of approximation (RMSEA), and standardized root mean residual
(SRMR). A significant chi-squared test (p , .05) indicates that the
model significantly differs from the data and therefore fits the data
poorly. Given that this statistical test is sensitive to sample size,
large samples can result in rejecting the model for small discrepan-
cies between the model and data. CFI values greater than .95,
RMSEA values lower than .06 (with .05 indicating close fit), and
SRMR values lower than .08 were used as thresholds indicating a
model with reasonable fit (Hu & Bentler, 1999; Kline, 2015).
Local fit was analyzed by looking at the residual correlation matrix
(i.e., the difference between model correlation matrix and the data
correlation matrix). As a rule of thumb, absolute residual correla-
tions greater than .10 may indicate poor local fit (Kline, 2015).
Differences in fit between the competing nested models were
tested using the Satorra-Bentler scaled chi-square difference test.

Transparency and Openness

We report how we determined our sample size, all data exclusions,
all manipulations, and all measures in the study. All study materials,
data, and analysis code have been made publicly available on the
Open Science Framework and can be accessed at https://osf.io/jbqta/.
Data were analyzed using R Version 4.1.1 (R Core Team, 2021), the
lavaan package Version 0.6.8 (Rosseel, 2012), and the influence.-
SEM package Version 2.2 (Pastore & Altoe, 2018).
This study’s design, hypotheses, and analysis plan were preregis-

tered (see https://osf.io/h6gts). There are three major ways in which
the current analysis diverges from preregistered report. First, the orig-
inal report included a bifactor model that was then omitted because it
was found to be unidentified. Second, univariate outliers were ini-
tially to be treated as missing data and multivariate outliers excluded
altogether, in part to handle problems related to multivariate nonnor-
mality. Aguinis et al. (2013) provided alternative ways of handling
outliers instead of completely excluding them from the analysis
(which could bias results). Therefore, the analyses and results
reported here follow the best practice recommendations listed in
(Aguinis et al., 2013). Third, a second two-factor CFA model was
added to the list of hypothesized models to test whether the data
could be represented by a spatial and temporal factor. In the aim
of transparency, results from the original analyses plan are also
available at this link: https://osf.io/r5u3n/.

Results

Descriptive Statistics

Descriptive statistics for each task are listed in Table 2. Before
fitting the various models, we inspected the data for evidence of
multivariate nonnormality. Because the assumption of multivariate
normality cannot be directly tested, univariate and bivariate non-
normality were taken as indirect indicators of multivariate nonnor-
mality (Kline, 2015). Tasks deviating substantially from univariate
normality were identified as tasks with a skew greater than 6 2
and kurtosis greater than 4. Additionally, we visually inspected the
bivariate scatterplots and quantile-quantile plots for all task pairs
for evidence of bivariate normality, linearity, and homoscedastic-
ity of the residuals (Kline, 2015). From these inspections, we
found evidence of deviation from univariate and bivariate normal-
ity, indicating that the assumption of multivariate normality was
likely violated. To address the violation of this assumption, a ro-
bust maximum likelihood estimator was used to fit the hypothe-
sized models. Robust maximum likelihood corrects standard errors
and model fit statistics in the case of deviation from multivariate
normality even in the presence of missing data (Savalei, 2014). In
addition to verifying the assumption of multivariate normality, the
data were screened for extreme bivariate and multivariate colli-
nearity. Table 3 displays the bivariate correlation matrix for all 12
tasks. All tasks had low to moderate correlation coefficients
(range = .14–.63), and there was no evidence of extreme bivariate
collinearity (all correlations were below .85; Brown, 2006).

Main Analyses

Table 4 summarizes goodness-of-fit statistics for each model
estimated. All models were shown to be empirically identified.
Fully standardized parameter estimates are reported in the path
diagrams and can therefore be interpreted as correlations in the
case of double-headed arrows and standardized regression coeffi-
cients in the case of single-headed arrows. Complete standardized
and unstandardized solutions for all models can be found in the
online supplemental materials.

Single-Factor CFAModel

We first tested the theory that all tasks are explained by a single
general magnitude processing factor (see Figure 7). This model
yielded a poor fit according to the chi-squared statistic, CFI, and
RMSEA (Hu & Bentler, 1999; Kline, 2015). The SRMR was at
the limit of what is considered reasonable fit (Hancock & Mueller,
2008). Finally, local fit testing showed four instances of poor local
fit in which the residual correlation was greater than 6 .10. Thus,
the one-factor model could not adequately explain the participants’
performance on the various tasks.

Two-Factor CFAModels

Next, we tested two two-factor models. The first two-factor
model tested whether the data could be explained by the following
two underlying factors: a general ratio processing factor and a gen-
eral (absolute) magnitude processing factor (Figure 8a). Similar to
the previous model, this two-factor model showed poor fit accord-
ing to the chi-squared statistic. RMSE, CFI, and SRMR all
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indicated adequate fit. In terms of local fit, there were three
instances of poor local fit. Finally, when compared to the previ-
ous one-factor model, the nested chi-squared difference test
indicated that the two-factor model fit the data significantly bet-
ter than the one-factor model, v2(1) = 57.76, p , .001. The sec-
ond two-factor model tested whether the data could be modeled
using two different factors: general spatial and general temporal
processing (Figure 8b). In this case, the model assumes that
performance on the set of tasks can be explained by domain-
related factors. This model yielded slightly worse model fit
than the previous two-factor model given that the RMSEA was
now above the cutoff. However, it still fit the data significantly
better than the one-factor model, v2(1) = 25.91, p , .001.

Four-Factor CFAModel

The four-factor CFA model showed the best model fit according
to all fit indices. The four-factor model also had a significantly better
fit than both two-factor models, ratio and magnitude factors: v2(5) =
44.32, p , .001; spatial and temporal factors: v2(5) = 64.73, p ,
.001. All residual correlations were below 6 .10, indicating good
local fit. Figure 9 shows the parameter estimates for this model.

All factor loadings were between .39 and .85. Higher loadings
within a given latent variable, ideally above .40 or even .50, indi-
cate higher commonality among the indicator variables. Only one
of the subtests, dot MD, had a relatively lower loading on the spa-
tial magnitude latent variable (.39). Composite reliability scores,
as measured by McDonald’s omega, were greater than .7 for three

Table 3
Bivariate Correlations for All Tasks From the FIML Observed Covariance Matrix

Tasks 1 2 3 4 5 6 7 8 9 10 11

1. Circle-RE 1
2. Line-RE .41 1
3. Dot-RE .34 .57 1
4. EA-RE .32 .58 .39 1
5. FA-RE .25 .47 .36 .61 1
6. EV-RE .27 .49 .44 .63 .59 1
7. Circle-MD .25 .38 .26 .27 .23 .27 1
8. Line-MD .14 .29 .22 .27 .27 .27 .27 1
9. Dot-MD .24 .21 .24 .28 .16 .23 .23 .15 1
10. EA-MD .31 .44 .34 .58 .51 .45 .33 .35 .28 1
11. FA-MD .25 .39 .35 .43 .43 .48 .30 .27 .23 .59 1
12. EV-MD .28 .39 .41 .49 .49 .56 .31 .30 .27 .55 .50

Note. FIML = full information maximum likelihood; EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; MD =
magnitude discrimination; RE = ratio estimation. All correlations were statistically significant at p , .001, except for the correlations between FA-RE and
dot-MD (p , .01), line-MD and circle-RE (p , .01), and line-MD and dot-MD (p , .01). These exceptions are underlined in the table. Colors do not have
a gradient scale but were included to help visualize correlation clusters.

Table 2
Descriptive Statistics for Average Absolute Error (RE Tasks) and Proportion Incorrect (MD
Tasks)

Tasks N M (SD) Median Range (min–max) Skewness Kurtosis Cronbach’s a

Spatial RE
Circle-RE 270 .116 (.035) .112 .052–.249 0.95 4.14 .83
Dot-RE 270 .125 (.037) .118 .055–.265 0.93 4.05 .78
Line-RE 267 .098 (.040) .089 .034–.314 1.41 6.56 .90

Temporal RE
EA-RE 266 .090 (.037) .080 .042–.281 2.00 8.31 .90
FA-RE 269 .115 (.052) .103 .038–.294 1.20 3.93 .91
EV-RE 269 .094 (.047) .081 .036–.344 2.32 9.75 .94

Spatial MD
Circle-MD 271 .164 (.071) .150 .025–.425 0.62 3.87 .41
Dot-MD 271 .158 (.071) .150 0–.4 0.68 3.44 .48
Line-MD 271 .162 (.071) .150 .025–.375 0.50 2.88 .43

Temporal MD
EA-MD 269 .177 (.110) .150 0–.575 1.06 4.29 .74
FA-MD 269 .138 (.081) .125 0–.4 0.74 3.25 .64
EV-MD 270 .180 (.107) .150 0–.575 1.02 3.81 .69

Note. EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; MD = magni-
tude discrimination; RE = ratio estimation; min = minimum; max = maximum. The mean score for MD tasks
refers to the proportion of incorrect responses. These means were transformed from the proportion of correct
responses to make the direction of scores constant across the RE tasks and the magnitude discrimination tasks
(lower scores indicate a better performance). The mean score for RE tasks refers to the averaged absolute error.
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out of the four factors (.81, .79, and .73 for the temporal ratio, tem-
poral magnitude, and spatial ratio factors, respectively), indicating
that these indicators were reliable measures of the latent construct.
In contrast, the spatial magnitude factor showed poor composite
reliability (.46). Inspection of the loadings for that variable
revealed smaller loadings (.39, .48, and .54) than in other latent
variables, thus explaining the lower reliability. The model also
revealed that two of the four correlations between the latent factors
were greater than .80, which may indicate that the constructs are
not empirically distinguishable. However, following the procedure
proposed by Rönkkö and Cho (2022), we found that only the cor-
relation between spatial and temporal magnitude suggested weak
discriminant validity. Given the nature of the tasks (i.e., their clear
conceptual/operational distinction), we chose to keep these two
latent variables separate. In the end, the four-factor measurement
model was retained for the structural analyses.

SEMModels With a Higher Order Latent Variable

The first model is a full SEM model consisting of the four-factor
CFA model with regression paths going from the magnitude to the
ratio latent variables instead of correlations. We first tested the signif-
icance of the paths going across domains and magnitude type (i.e.,
from temporal magnitude to spatial ratio processing and spatial mag-
nitude to temporal ratio processing). To do this, we fit a trimmed
model in which these paths were constrained to zero. According to fit

indices, the resulting trimmed model (Figure 10a) had comparable fit
to the previous SEM model containing all paths (not depicted). In
other words, the fit of the trimmed model was not significantly worse
than the model with all paths included, v2(2) = .306, p = .86. In addi-
tion, all residual correlations for the trimmed model were below .10,
indicating good local fit. Because the fit indices indicated that these
two structural models were comparable, we retained the most parsi-
monious model (i.e., the trimmed model).

Figure 10a depicts the parameter estimates for the retained
structure model. The residual correlation between spatial ratio and
temporal ratio was high (.632, SE = .119, p , .001), indicating
that there is a significant relationship between spatial and temporal
ratio processing once we control for absolute magnitude process-
ing. This is a slight decrease from the correlation between these
two variables in the four-factor CFA model in which the relation-
ship is not controlled for absolute magnitude processing (.774,
SE = .046, p , .001). Spatial magnitude processing significantly
predicted spatial ratio processing (b = .777, SE = .053, p , .001,
95% confidence interval [CI; .673, .880], 99% CI [.641, .913]).
This means a 1-unit standard deviation change in spatial magni-
tude processing ability was related to a .777 standard deviation
unit change in spatial ratio processing ability. Temporal magnitude
significantly predicted temporal ratio processing (b = .811, SE =
.044, p , .001, 95% CI [.725, .897], 99% CI [.698, .924]). This
means a 1-unit standard deviation change in temporal magnitude

Table 4
Goodness-of-Fit Statistics for All Models

Models v2 (df) rRMSEA [90% CI] rCFI rSRMR AIC BIC

1-factor CFA 125.77 (48), p , .001 0.083 [0.065, 0.101] 0.916 0.046 �10,097.60 �9,946.32
2-factor CFA (magnitude ratio) 79.93 (47), p = .002 0.055 [0.033, 0.075] 0.964 0.038 �10,147.67 �9,992.78
2-factor CFA (spatial temporal) 92.63 (47), p , .001 0.064 [0.044, 0.083] 0.951 0.040 �10,134.23 �9,979.34
4-factor CFA and SEM 39.67 (42), p = .574 0.000 [0, 0.041] 1.000 0.027 �10,183.42 �10,010.52
4-factor SEM (trimmed) 40.41 (44), p = .626 0.000 [0, 0.038] 1.000 0.027 �10,187.16 �10,021.47

Note. r = robust; RMSEA = root mean square error of approximation; CI = confidence interval; CFI = comparative fit index; SRMR = standardized root
mean residual; AIC = Akaike information criterion; BIC = Bayesian information criterion; CFA = confirmatory factor analysis; SEM = structural equation
model. Bolded values are fit statistic values indicating good fit according to the criteria described in the Method section. The chi-squared statistic was cor-
rected using the Mplus variant of the Yuan-Bentler correction factor. Chi-squared scaling factors were between 1.138 and 1.164.

Figure 7
Results for the One-Factor CFA Model

Note. CFA = confirmatory factor analysis; EA = empty auditory interval; FA = filled auditory interval; EV = empty
visual interval; MD = magnitude discrimination; RE = ratio estimation. Parameter estimates are fully standardized.
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processing ability was related to a .811 standard deviation unit
change in temporal ratio processing ability. Finally, spatial and
temporal magnitude processing ability were significantly corre-
lated (.855, SE = .053, p, .001).
We also considered an equivalent model in which the correla-

tion between the spatial and temporal ratio latent variables was
specified as a higher order factor with equality constraints imposed
on the loadings (see Figure 10b). Though this model is equivalent
(i.e., it is another way of specifying the correlation between two
latent variables and results in the same goodness fit), it assumes
that the spatial and temporal ratio factors are affected by a com-
mon ratio processing factor. Spatial and temporal ratio processing
were significantly related by the general ratio processing factor
(b = .501, SE = .059, p , .001, 95% CI [.385, .617], 99% CI
[.348, .653], and b = .465, SE = .070, p , .001, 95% CI [.329,
.602], 99% CI [.286, .645], respectively). Overall, in this higher
order SEM model, the respective magnitude and general ratio fac-
tor explained in sum 85% of the variance for the spatial ratio proc-
essing and 87% of the variance for temporal ratio processing.
Finally, sensitivity analyses were conducted to determine whether
the results could be due to influential outliers or the violation of
the multivariate normality assumption. Though we did detect

some influential outliers, exclusion of these outliers did not quali-
tatively change the model parameter estimates significantly (see
online supplemental materials). This indicates that results were not
due to influential outliers or the violation of the multivariate nor-
mality assumption.

Exploratory Analyses

Number Line Estimation Response Bias

One possible explanation for the correlation between the spatial
and temporal ratio factors is that participants had a similar
response bias unrelated to their ratio processing ability. For exam-
ple, a person might have a bias away from the response line
extremities (i.e., their estimations are biased toward the middle of
the response line) thereby causing them to have a lower slope
while still being highly precise (Figure 11b). This leads to a worse
average absolute error score even though they may be just as pre-
cise as an individual with a slope near 1 (Figure 11a). If people
have consistent biases, the use of the number line for all ratio tasks
may inflate correlations between the two ratio processing factors.
To test whether the results found in the previous section may be
influenced by response bias, we refit the final model using R2 as an

Figure 8
Results for Two Two-Factor CFA Models

Note. Two-factor CFA models with (a) ratio and absolute magnitude factors and (b) spatial and temporal factors.
CFA = confirmatory factor analysis; EA = empty auditory interval; FA = filled auditory interval; EV = empty visual
interval; MD = magnitude discrimination; RE = ratio estimation. Parameter estimates are fully standardized.
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accuracy measure instead of average absolute error. R2 was
extracted from a linear model fit to each participant’s response in
every task following data cleaning. The advantage of using R2 as a
measure of RE accuracy is that it measures precision relative to
the slope for each task and participant. It is also robust to problems
created to incorrect response patterns (i.e., scale inversion and half
scale patterns). The disadvantage is that this measure might not
capture the accuracy of the individual’s RE relative to the true
stimulus ratio. Also, R2, like average absolute error, does not dif-
ferentiate response biases when the participant also has low preci-
sion (Figure 11c and d).
When using R2 as a measure of RE accuracy, model fit remained

adequate, v2(44) = 52.598, p = .175, CFI = .991, RMSEA = .027,
90% CI [.00, .057], SRMR = .031, Akaike information criterion
(AIC) = �5,521.09, Bayesian information criterion (BIC) =
�5,355.39. Parameter estimates were similar to the ones previ-
ously reported, with two notable exceptions (for complete unstan-
dardized and standardized solutions, see the online supplemental
materials). First, the loading for the circle RE task went from b =
.488 (SE = .062) to b = .726 (SE = .057). The spatial ratio factor
now showed adequate composite reliability (.81). Second, the re-
sidual correlation between spatial and temporal ratio processing
went from .632 (SE = .119) to .728 (SE = .117).
Taken together, these results indicate that initial findings are robust

to the accuracy measure used and somewhat robust to linear response
biases. It does not appear that response bias inflated the relationships
between tasks. Furthermore, they suggest that R2 might also be a
more reliable measure of ratio processing than average absolute error
as it is less vulnerable to certain types of response bias.

Reliability of Comparison Ratios

Indicators of the spatial magnitude factor were shown to have
poor reliability. To investigate the source of this low reliability,
we tested whether poor reliability in the spatial MD tasks could be
explained by the comparison ratios used in this study. When
designing the study, we chose sets of comparison ratios on which
participants performed above chance but that were difficult enough
to avoid ceiling effects. However, we had not verified that these

comparison ratios had adequate reliability. Therefore, we used a
CFA to examine the reliability of the comparison ratios. Descrip-
tive statistics for the comparison ratios are shown in Table S9. On
average, participants were above chance on all comparison ratios
in each task (p , .001).

To investigate the reliability of the comparison ratios, we esti-
mated a two-factor CFA model with spatial magnitude and tempo-
ral magnitude as latent variables. Each factor was composed of
three latent subfactors (i.e., the tasks): line length, circle area, and
dot number discrimination for the spatial magnitude factor and
empty auditory, full auditory, and empty visual interval discrimi-
nation for the temporal magnitude factor. Each subfactor was com-
posed of five indicators corresponding to the comparison ratios.
Indicators corresponded to the proportion of correct trials across
all standard magnitudes for a given comparison ratio. The model
was estimated using FIML to handle missing data and robust max-
imum likelihood to handle the nonnormality of the factor indica-
tors. The model yielded adequate fit, v2(398) = 399.828, p = .47,
CFI = .998, RMSEA = .004, 90% CI [.00, .022], SRMR = .047,
AIC = �11,213.35, BIC = �10,863.95. The model along with
fully standardized parameter estimates are shown in Figure 12 (see
Table S10 for complete solution). From this figure, we noticed
two potentially problematic comparison ratios. These two load-
ings, which were the hardest comparison ratios for both the line
(b = .110, SE = .072, p = .133) and circle discrimination tasks (b =
.112, SE = .064, p = .148), were not significantly different from
zero. This indicates that these comparison ratios might not be
appropriate or reliable measures of MD even though participants
were, on average, above chance. In practice, these comparison
ratios might have been too small for participants to discriminate
the difference without guessing, thereby introducing noise into the
measures. When recalculating the task reliability after these exclu-
sions, Cronbach’s alpha for both the line and circle tasks remained
low (.44 and .47, respectively).

We then wanted to investigate whether these poor comparison
ratios impacted the results found in the previous SEM analysis.
We recalculated the aggregate scores excluding the comparison
ratios with nonsignificant loadings (line 1.01 and circle 1.02) and

Figure 9
Results for Four-Factor CFA Model

Note. CFA = confirmatory factor analysis; EA = empty auditory interval; FA = filled auditory interval; EV = empty
visual interval; MD = magnitude discrimination; RE = ratio estimation. Parameter estimates are fully standardized.
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reestimated the final model with correlated residuals. Model fit
remained adequate, v2(44) = 38.779, p = .694, CFI = 1.000,
RMSEA # .001, 90% CI [.00, .030], SRMR = .026, AIC =
�10,147.82, BIC = �9,982.12, and most parameter estimates
showed little change, qualitatively speaking (see Table S11 for
complete solution). The factor loadings for line (b = .471, SE =
.067 to b = .528, SE = .063) and circle MD (b = .523, SE = .065 to
b = .558, SE = .062) improved slightly, and the residual correlation
between spatial and temporal ratio slightly decreased from .632
(SE = .119) to .581 (SE = .118).
Taken together, the lack of changes in parameter estimates sug-

gests that the reliability of the comparison ratios did not have an im-
portant effect on the final model, and therefore our conclusions
remain unchanged. However, removing the problematic ratios did
not solve the issue of low loadings for the spatial discrimination
tasks either. This indicates that other factors, such as an insufficient
number of trials, may be the source of low reliability and that
results from the model must still be interpreted with caution.

Effect of Education and Music Experience

Finally, we tested whether performance was related to previous
experience. For example, musicians have been shown to perform
better on certain temporal tasks (Banai et al., 2012; Rammsayer &
Altenmuller, 2006; Vibell et al., 2021). To examine the effect of
prior experience, we analyzed the correlations between each task
and years of education, years of music training, and years of music
playing experience. None of the correlations were statistically sig-
nificant after correcting for multiple comparisons using a Bonfer-
roni correction (see online supplemental materials).

Discussion

The aim of the current study was to examine whether spatial
and temporal ratios are processed by a common RPS. If ratios in
space and time are processed by a common mechanism, then

Figure 10
Retained Four-Factor SEM Model With a Higher Order Variable and Equivalent Model With
Correlated Residuals

Note. (a) SEM model with a higher order latent variable (general ratio processing). (b) Equivalent four-
factor SEM model with a correlation between residuals of spatial and temporal ratio variables. SEM =
structural equation modeling; EA = empty auditory interval; FA = filled auditory interval; EV = empty vis-
ual interval; MD = magnitude discrimination; RE = ratio estimation. All parameters shown in the figure
are significant (p , .001), except for the loading between circle ratio and spatial ratio processing (p =
.001). Values in circles are residual variances.
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individuals’ ability to process ratios in space (either in length,
area, or numerosity) should correlate with their ability to process
ratios in time. To test this hypothesis, we measured adult partici-
pants’ ability to represent spatial and temporal ratios on a bounded
line as well as discriminate temporal and spatial absolute magni-
tudes and modeled how these different abilities are related using
SEM.
The single-factor model tested the hypothesis that all tasks could be

explained by a single general factor. This model showed the worst fit
out of the four models. Next, two two-factor models tested whether
the data could be modeled using either a spatial and temporal factor
or a magnitude and ratio factor. Although these two models fit the
data better than the previous single-factor model, other model indices
indicated that both two-factor models poorly fit the data. The final
model was tested in the two steps. In the first step, the four-factor
CFA model was fit to assess the measurement properties of the four
factors. This model showed the best fit compared to the other CFA
models according to all fit indices used. This indicates that the per-
formance on the tasks can be modeled by four separable constructs:
spatial magnitude, spatial ratio, temporal magnitude, and temporal ra-
tio processing.
This measurement model showed that both temporal factors

had adequate composite reliability indicating that the tasks were
tapping into general timing ability, rather than modality-specific
timing ability. This is consistent with previous literature showing
that, although individuals tend to have a higher temporal resolution
in the auditory modality than the visual modality, both use the same
underlying timing mechanism when longer stimuli (near the 1-s

range) are used (Rammsayer et al., 2015; Stauffer et al., 2012).
Although the spatial ratio factor had adequate composite reliability,
the spatial magnitude factor had low composite reliability, which
could be explained by the individual tasks’ low reliability, as
opposed to the tasks sharing little common variance. Finally, all
latent variables were shown to be empirically distinguishable, the
only exception being the spatial magnitude and temporal magnitude
latent variables, which showed moderate evidence of discriminant
validity problems (Rönkkö & Cho, 2022). Although poor discrimi-
nant validity can indicate that two constructs are not empirically
distinguishable, the nature of the tasks (spatial vs. temporal discrim-
ination) was sufficiently different on a conceptual level to model
them separately in the four-factor model.

In the second step, the four-factor CFA was respecified into an
SEM including within- (e.g., spatial magnitude and spatial ratio)
and between- (e.g., temporal magnitude and spatial ratio) domain
regression paths between the ratio and magnitude latent variables.
The between-domain paths (i.e., temporal magnitude and spatial
ratio and spatial magnitude and temporal ratio) were initially
included to control for leftover variance related to general cogni-
tive ability. Conversely, we had little theoretical reason to believe
that these paths would be significantly different from zero once we
controlled for within-domain relationships between magnitude and
ratio processing. Therefore, we fit this SEM model twice: once
with the between-domain magnitude-ratio paths and once without.
Although the latter model had two fewer paths than the first
model, it was retained as it fit the data equally well to the former
model and was the most parsimonious. This suggests that there is

Figure 11
Examples of Response Bias Influencing Average Absolute Error (AAE)

Note. (a) Perfect slope with high precision. (b) Low slope with high precision. (c) Near
perfect slope with low precision. (d) Low slope with low precision. See the online article
for the color version of this figure.
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no evidence for additional mechanisms that are involved in linking
magnitude and ratio factors across domains other than the common
mechanisms related to absolute magnitude and ratio processing re-
spective to each domain.
The resulting trimmed SEM model with correlated residuals

(Figure 10a) revealed a significant relationship between people’s
ability to estimate spatial and temporal ratios even after controlling
for people’s ability to discriminate absolute magnitudes. This sup-
ports the hypothesis that ratio processing in the spatial and tempo-
ral domain are related, thereby supporting the idea of a common
RPS. This RPS may be related to a neural mechanism that allows
for amodal representation of ratio magnitudes and is independent
of absolute magnitude processing. Whereas previous studies have
shown that spatial ratios are processed by similar mechanisms
across different symbolic formats (Jacob & Nieder, 2009a) as well
as different spatial magnitudes, such as length and numerosity (Ja-
cob & Nieder, 2009b; Matthews et al., 2016), this is the first study
to show a relationship between ratio processing across spatial and
temporal domains. The findings in the current study therefore sup-
port the existence of an RPS as proposed by Matthews et al.
(2016) and significantly extend the theory beyond symbolic and
nonsymbolic (spatial) ratios to accommodate temporal ratios as
well.
In addition to finding a significant relationship between spatial

and temporal ratio processing, absolute magnitude processing
factors were also found to be significant predictors of ratio proc-
essing factors in both the spatial and temporal domains. For
example, the spatial magnitude factor explained 60% of the

variance in the spatial ratio processing factor, while the general
ratio processing factor only explained 25% of the variance in the
same factor in the higher order SEM model (see Figure 10b).
Similarly, the temporal magnitude factor explained 66% of the
variance in the temporal ratio processing factor, while the gen-
eral ratio processing factor only explained 21% of the variance
in the same factor. These results indirectly replicate the relation-
ship found in the secondary analyses conducted on data from
Park et al. (2021; see online supplemental materials) as well as
extend it to magnitudes in the temporal domain, which is a novel
finding. Though the replication is indirect because Park et al.
(2021) used ratio discrimination tasks instead of estimation
tasks, finding similar results to Park et al. (2021) supports the va-
lidity of the relationships between latent factors found in the cur-
rent study, despite the poor measurement qualities of the spatial
magnitude indicators. These findings also align with previous
neuroimaging studies on ratio and absolute magnitude process-
ing, which found that neural correlates associated with nonsym-
bolic (spatial) ratio processing are similar to the correlates
associated with nonsymbolic absolute magnitude processing in
the prefrontal and parietal cortices in both humans and monkeys
(Jacob & Nieder, 2009b; Vallentin et al., 2012; Vallentin &
Nieder, 2010).

Finally, we found a high correlation between spatial and tempo-
ral magnitude factors, which was unexpected given previous litera-
ture on the association between spatial and temporal magnitudes
(Mendez et al., 2011). We can think of two plausible explanations
for the magnitude of this relationship. The first is that the spatial

Figure 12
Results for CFA Model on Comparison Ratios

Note. CFA = confirmatory factor analysis; EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; MD =
magnitude discrimination. Parameter estimates are fully standardized. Dashed lines indicate that the parameter estimate was not significantly
different from zero (p . .05).
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magnitude factor, which was shown to have low composite reli-
ability, is mostly measuring general processes (e.g., working mem-
ory and decision-making) needed to successfully complete the
discrimination task rather than (or in addition to) spatial magnitude
acuity. This explanation would align with findings by Marcos and
Genovesio (2017) showing that discrimination for different types
of magnitudes might share neuronal populations related to deci-
sion-making but not magnitude processing. However, to obtain a
high correlation of .85 between spatial and temporal magnitude
factors, the temporal magnitude factor would also have to be
measuring general cognitive processes rather than temporal mag-
nitude acuity. This seems unlikely given that other latent variables
had a high composite reliability and that the correlations between
domains (i.e., spatial magnitude with temporal ratio and temporal
magnitude with spatial ratio) were lower than the correlations
within domains (i.e., spatial magnitude with spatial ratio and tem-
poral magnitude with temporal ratio), indicating that there is some
domain specificity to the magnitude factors (i.e., they are not
solely measuring domain-general processes).
The second possible explanation is that spatial and temporal

magnitudes are processed by a common magnitude system, as sug-
gested by the ATOM theory (Bueti & Walsh, 2009; Walsh, 2003).
In contrast to the possibility outlined in the previous paragraph,
this domain-general process would be specific to magnitude
encoding (e.g., magnitude comparison) rather than unrelated to
magnitude (e.g., decision-making). Although the low factor load-
ings indicate that the spatial magnitude tasks had low reliability, it
may also indicate that absolute magnitude processing mechanisms
only partially overlap across different types of spatial magnitudes.
This explanation aligns with the results of the CFA conducted on
the comparison ratios that showed lower loadings across the spa-
tial tasks and, more specifically, the dots task, possibly because it
is a discrete magnitude as opposed to continuous like in the line
and circle tasks. It also aligns with results from single cell studies
showing that some separate but overlapping neuronal populations
encode information for different types of visual magnitudes, while
other neuronal populations, possibly part of a larger fronto-parietal
network responsible for general magnitude processing, encode
magnitude information across different types of visual magnitudes
(Eiselt & Nieder, 2013; Nieder et al., 2006; Tudusciuc & Nieder,
2007). Similarly, Cona et al. (2021) have shown in a meta-analysis
that neuronal populations encoding spatial and temporal magni-
tudes might be organized in a gradient-like way in proximal brain
areas, suggesting that different types of magnitudes may be
encoded separately at lower levels of abstraction but processed by
a common magnitude mechanism system at a higher level of proc-
essing (Cona et al., 2021). Therefore, the common magnitude sys-
tem might be, as other authors have suggested, a higher order
mechanism responsible for magnitude comparison that operates
only after magnitudes have been encoded by neuronal populations
tuned to those specific types of magnitude (Cohen Kadosh et al.,
2008; Holloway & Ansari, 2008; Pinel et al., 2004). In the context
of the current study, the high correlation between spatial and tem-
poral magnitude factors could mean that these two factors repre-
sent the same or largely overlapping higher order mechanisms.
Last, the high correlation between spatial and temporal magni-

tude limits our ability to make conclusions about how domain spe-
cific these mechanisms are. For instance, one may argue that the
strong relationship between within-domain magnitude and ratio

factors is evidence for domain-specific processes. More specifi-
cally, individuals’ performance on RE tasks is largely explained
by absolute magnitude factors that are related to the magnitude
type and thereby are specific to either the spatial or temporal do-
main. However, the high correlation between the two magnitude
factors also indicates that the spatial and temporal magnitude fac-
tors are controlling for much of the same variance when regressed
on the ratio factors. Therefore, we cannot say with certainty that
the variance explained by the magnitude factors is purely domain
specific. Both magnitude factors could, in fact, be indicators of a
general magnitude system. In other words, these two factors could
be controlling mostly for variance related to general magnitude
processing, in addition to a small amount of variance related to
within-domain magnitude processing (specific to temporal or spa-
tial magnitudes).

Absolute Versus Relative Magnitude: How Different
Are They?

The results above demonstrate distinguishable yet highly corre-
lated constructs. The fact that absolute magnitude processing fac-
tors explain such a large part of the variance in the ratio factors
(approximately 60%) may lead us to question the differentiability
between absolute magnitude mechanisms, such as ATOM or the
approximate number system, and relative magnitude mechanisms,
such as the RPS. Although both types of mechanisms are said to
process approximate, nonsymbolic magnitudes, ATOM hypothe-
sizes a common mechanism that allows one to make “smaller
than” or “larger than” judgments across various types of magni-
tudes (Bueti & Walsh, 2009). In contrast, the RPS is hypothesized
to be the mechanism that allows for the automatic extraction of a
ratio magnitude between two stimuli. Another way the RPS can be
interpreted is as a mechanism that allows one to make “how much
larger” or “how much smaller” judgments across various types of
magnitudes. It might be that the main difference between the MD
and RE tasks is the type of output required in each task but that
the neural mechanisms used in both tasks are actually the same (or
closely overlap).

More specifically, when shown two sets of dots in a discrimina-
tion task (such as the one used in this study), a participant may
automatically extract the approximate ratio between these two sets
of dots and base their response on the extracted relationship. As a
concrete example, if a set of 100 dots is compared to 104 dots
(exact ratio of 1:1.04), the participant may perceive it as an ap-
proximate ratio of 1 to a little over 1 (e.g., 1.04 6 .02; or an ap-
proximate ratio of 1:1 if they cannot discriminate between the two
sets). Therefore, even if the measured response is binary (e.g.,
which of the two stimuli is larger), the mechanism itself may be
continuous in nature. In that case, there would be little difference
between the underlying mechanism allowing one to tell whether a
stimulus magnitude is “larger than” another stimulus magnitude
and the mechanism allowing one to tell “how much larger” a stim-
ulus is compared to another. To perform the MD task, one could
simply have the second (ratio) mechanism operating automatically
(whether it is conscious or not) and then make a conscious deci-
sion based on that information without having a dedicated absolute
magnitude mechanism.
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Strengths and Limitations

The current study must be interpreted in light of its strengths
but also its limitations. First, the low reliability associated to the
spatial magnitude tasks limits interpretation as low reliability can
lead to attenuated correlations. This result is surprising because
the secondary analysis on data from Park et al. (2021), which
included similar discrimination tasks, yielded factor loadings
between .74 and .81, which is far greater than the loadings found
in the current study. Though the tasks were closely modeled after
the ones used in Park et al. (2021) as well as other studies by that
research group (Matthews et al., 2016; Park & Matthews, 2020),
the difference in factor loadings could be partially explained by
differences in task parameters, either the comparison ratios chosen
or the low number of trials, and sample characteristics (i.e., chil-
dren vs. adults). However, despite the reliability of the tasks, the
spatial magnitude factor still showed strong relationships with the
other more reliable latent variables and replicated findings from a
secondary analysis on similar tasks (Park et al., 2021). Given that
the correlations between the latent variables seem reasonable, we
think we are measuring spatial absolute magnitude processing to
some degree, along with domain-general processes related to mag-
nitude comparison.
Second, the use of RE tasks is considered a strength but also

presents some limitations. The advantage of using a RE task with
the same response line across all spatial and temporal tasks is that
participants are doing the same operation in all tasks: They are
transforming a ratio from one (spatial or temporal) format to a rep-
resentation of that ratio on a line. This limits differences between
domains that may be induced by a discrimination task. For exam-
ple, a temporal discrimination task in which two divided intervals
are presented sequentially is probably more demanding on work-
ing memory than a spatial ratio discrimination task in which two
ratios are presented side by side simultaneously. However, this
might also elevate correlations between the two domains because
the response format is the same (i.e., the common method is con-
tributing to the shared variance). We provide two counter argu-
ments. First, though the common method may be problematic for
studies in which the method is orthogonal to the subject of interest,
the response format (externalizing the internal representation of a
ratio) is directly related to the subject of interest in the current
study (ratio processing). Second, one might argue that, even
though the response format is directly related to the subject of in-
terest, participants may still have response biases unrelated to their
ratio processing ability (e.g., avoiding making estimations at either
end of the response line). We acknowledge this limitation but
simultaneously show that using another measure of estimation ac-
curacy less susceptible to linear biases (R2) leads to the similar
results and conclusions.

Future Directions

The results of the current study provide evidence for a relation-
ship between ratio processing across the spatial and temporal do-
main. However, it does not answer the question of how spatial and
temporal ratio processing are related. This relationship may have
two sources of common variance: the ability to perceive or extract
the value of a given ratio and the ability to represent a given ratio.
However, the current study does not allow us to distinguish

between these explanations of the relationship observed. It also
seems unlikely that results are solely a product of task demands
(i.e., estimation) as the precision of RE is limited by the precision
of ratio perception by principle of precedence. Given that there
may be perceptual aspects of ratio processing that are specific to
different types of magnitude, parsing out ratio perception from
production may shed light on domain generality versus specificity.
Additionally, future studies could extend the study of ratio proc-
essing to magnitudes beyond spatial and temporal domains, such
as loudness or brightness.

Additionally, future studies could investigate the development
of ratio processing across different domains in order to provide
insight into the underlying mechanisms related to absolute and rel-
ative magnitude processing. For example, Park et al. (2021) found
that performance on a given ratio task (e.g., line length ratio) was
better by the performance on a ratio task with a different format
(e.g., circle area ratio) than on the absolute magnitude task with
the same format (e.g., line length discrimination). Given that all
the factors in this study are highly correlated with each other,
determining whether absolute and relative magnitude processing
across different domains diverges (as suggested by Hamamouche
& Cordes, 2019), converges, or develops in parallel throughout de-
velopment would provide insight into the differences between
these two mechanisms (Newcombe, 2014; Newcombe et al.,
2015).

Finally, previous research has shown a link between perform-
ance on nonsymbolic (spatial) ratio processing tasks and symbolic
fraction knowledge. Though this study addressed the relationship
between two types of nonsymbolic magnitude (temporal and spa-
tial), future research could investigate whether temporal ratio proc-
essing also predicts performance on symbolic fraction knowledge
or whether this relationship between nonsymbolic and symbolic
ratio processing applies only to spatial magnitudes.

Conclusion

From the progress bars on our screens to eighth notes in music,
ratios are present everywhere: We cannot help but think in a rela-
tive way. The current study has important implications as it is the
first, to our knowledge, to investigate how ratio processing in
space and time are related, thereby extending the literature on ratio
processing beyond the numerical and visuospatial domain. Results
indicate that spatial and temporal ratio processing are related even
when controlling for absolute magnitude processing ability. This
supports the idea of a common ratio processing system operating
across different domains. We also showed that absolute magnitude
processing is a significant predictor of ratio processing in both spa-
tial and temporal domains, indicating that both mechanisms might
use related underlying mechanisms. Finally, we show that spatial
MD is highly related to temporal MD, which supports the idea that
absolute magnitudes might also be processed by a common magni-
tude system across domains.
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